$$ \begin{matrix}\overset{'}{parabola},&\overset{''}{conic}&:&\overset{'''}{df+fh}, & \overset{''''}{df} \\ &\text{vel}&:&hf+fd, & df. \end{matrix} $$
vel $\propto$
$$ \begin{matrix}hf+fh+hd. & dh+hf \\ hf+fh-hd. & -dh+hf.\\\\\hline\\hf+fh+hb-bd.&-db+bh+hf.\\\xcancel{hf+fb+hb.} \\\text{In hyperbolico: } \\ hf+fh+hb+bd. & db+bh+hf \end{matrix} \\ $$
Si parabolicum consideretur vt hyperbolicum |
Ratio $hf + hd$ . (ad) $df$ ||
erit vt: Infinita plus bìs infinita plus $bd$ finita |
ad: Bis infinitam plus $bd$ finita. |
hoc est vt 3 ad 2.||
<HORIZONTAL LINE>
Si vt elipticum seu sphaeroides. ||
erit vt: Infinita plus bìs infinita minus $bd$ finita |