MSS ID: Add_ms_6787_f436r

Tasks

Page Image

add_6787_f436.jpeg

Transcription

$$ \begin{matrix}\overset{'}{parabola},&\overset{''}{conic}&:&\overset{'''}{df+fh}, & \overset{''''}{df} \\ &\text{vel}&:&hf+fd, & df. \end{matrix} $$

vel $\propto$

$$ \begin{matrix}hf+fh+hd. & dh+hf \\ hf+fh-hd. & -dh+hf.\\\\\hline\\hf+fh+hb-bd.&-db+bh+hf.\\\xcancel{hf+fb+hb.} \\\text{In hyperbolico: } \\ hf+fh+hb+bd. & db+bh+hf \end{matrix} \\ $$

Si parabolicum consideretur vt hyperbolicum |

Ratio $hf + hd$ . (ad) $df$ ||

erit vt: Infinita plus bìs infinita plus $bd$ finita |

ad: Bis infinitam plus $bd$ finita. |

hoc est vt 3 ad 2.||

<HORIZONTAL LINE>


Si vt elipticum seu sphaeroides. ||

erit vt: Infinita plus bìs infinita minus $bd$ finita |